A NOTE ON THE ENDOMORPHISM RING OF ORTHOGONAL MODULES

Le Van An, Nguyen Thi Hai Anh
Department of Education, Ha Tinh University, Ha Tinh City, Vietnam
Received on $25 / 4 / 2019$, accepted for publication on $13 / 6 / 2019$

Abstract

In this paper, we extend Mohamed-Müller's results [2, Lemma 3.3] about the endomorphism ring of a module $M=\oplus_{i \in I} M_{i}$, where M_{i} and M_{j} are orthogonal for all distinct elements $i, j \in I$.

1 Introduction

All rings are associated with identity, and all modules are unital right modules. The endomorphism ring of M are denoted $\operatorname{End}(M)$. A submodule N of M is said to be an essential (notationally $N \subset^{e} M$) if $N \cap K \neq 0$ for every nonzero submodule K of M. Two modules M and N are called orthogonal if they have no nonzero isomorphic submodules. Let N be a right R-module. A module M is said to be N-injective if for every submodule X of N, any homomorphism $\varphi: X \longrightarrow M$ can be extended to a homomorphism $\psi: N \longrightarrow$ M. Two modules M and N are called relatively injective if M is N-injective and N is M-injective. In [2, Lemma 3.3], S. H. Mohamed and B. J. Müller proved that:

Let $M=M_{1} \oplus M_{2}$. If M_{1} and M_{2} are orthogonal, then

$$
S / \Delta \cong S_{1} / \Delta_{1} \times S_{2} / \Delta_{2}
$$

The converse holds if M_{1} and M_{2} are relatively injective, where

$$
S=\operatorname{End}(M), S_{i}=\operatorname{End}\left(M_{i}\right)(i=1,2)
$$

and

$$
\Delta=\left\{s \in S \mid \operatorname{Ker}(s) \subset^{e} M\right\}, \Delta_{i}=\left\{s_{i} \in S_{i} \mid \operatorname{Ker}\left(s_{i}\right) \subset^{e} M_{i}\right\}(i=1,2)
$$

In this paper, we study [2, Lemma 3.3] in generalized case. We have:
Theorem A. (i). Let $M=\oplus_{i \in I} M_{i}$ be a direct sum of submodules such that M_{i} and M_{j} are orthogonal for any i, j of I and $i \neq j$, then $\prod_{i \in I} S_{i} / \Delta_{i}$ is embedded into S / Δ.

In particular, if I is a finite set, $\prod_{i \in I} S_{i} / \Delta_{i} \cong S / \Delta$.
(ii). Let $M=\oplus_{i \in I} M_{i}$ be a direct sum of submodules such that M_{i} and M_{j} are relatively injective for any i, j of $I, i \neq j$ and $\prod_{i \in I} S_{i} / \Delta_{i} \cong S / \Delta$, then M_{i} and M_{j} are orthogonal with i, j of I and $i \neq j$, where $S=\operatorname{End}(M), S_{i}=\operatorname{End}\left(M_{i}\right)(i \in I)$ and $\Delta=\{s \in S \mid$ $\left.\operatorname{Ker}(s) \subset^{e} M\right\}, \Delta_{i}=\left\{s_{i} \in S_{i} \mid \operatorname{Ker}\left(s_{i}\right) \subset^{e} M_{i}\right\}(i \in I)$.

[^0]
2 Proof of Theorem A

(i). Let s be an element of the endomorphism ring S and x an element of the module M, then $x=\sum_{i \in I} x_{i}$ with $x_{i} \neq 0$ for every $i \in I^{\prime}$ (where I^{\prime} is the finite subset of I), $s(x)=\sum_{i \in I} s\left(x_{i}\right)$. Because $s\left(x_{i}\right)$ is an element of M, thus $s\left(x_{i}\right)=\sum_{j \in I} s_{i j}\left(x_{i}\right)$ with $s_{i j}\left(x_{i}\right)=p_{j} \circ s\left(x_{i}\right)$ is an element of M_{j} (where $p_{j}: M \longrightarrow M_{j}$ is a natural homomorphism, $s_{i j}\left(x_{i}\right) \neq 0$ for every $j \in I_{0}, I_{0}$ is finite and I_{0} is a subset of $\left.I\right)$. We consider the matrix $s=\left[s_{i j}\right]_{I \times I}$ with $s_{i j}: M_{i} \longrightarrow M_{j}$ being homomorphism. Note that, $s_{i j}$ is an endomorphism of M because $s_{i j}\left(\sum_{j \in I} x_{j}\right)=0+\ldots+0+s_{i j}\left(x_{i}\right)+0+\ldots$

Claim 1. $\operatorname{Ker}\left(s_{i j}\right)$ is an essential submodule of M for every i, j belonging to I and $i \neq j$.

Let N be a nonzero submodule of M and $\operatorname{Ker}\left(s_{i j}\right) \cap N=0$, then $\left.s_{i j}\right|_{N}$ is a monomorphism, thus $N \cong s_{i j}(N)$ with $s_{i j}(N)$ being a submodule of M_{j}. But $s_{i j}\left(\oplus_{k \neq i} M_{k}\right)=0$, thus $\oplus_{k \neq i} M_{k}$ is a submodule of $\operatorname{Ker}\left(s_{i j}\right)$. Hence $\oplus_{k \neq i} M_{k} \cap N=0,\left(\oplus_{k \neq i} M_{k}\right) \oplus N$ is a submodule of $M=\left(\oplus_{k \neq i} M_{k}\right) \oplus M_{i}$. Thus

$$
N \cong\left(\left(\oplus_{k \neq i} M_{k}\right) \oplus N\right) /\left(\oplus_{k \neq i} M_{k}\right) \subset M /\left(\oplus_{k \neq i} M_{k}\right) \cong M_{i} .
$$

Let $s_{i j}(N)=Y$ be a submodule of M_{j}, there exists a submodule X of M_{i} such that $X \cong N \cong Y$. This is a contradiction to the fact that M_{i} and M_{j} are orthogonal. Therefore, $\operatorname{Ker}\left(s_{i j}\right)$ is an essential submodule of M for every i, j that are elements of I and $i \neq j$.

Claim 2.

$$
\operatorname{Ker}(s) \cap M_{i}=\cap_{j \in I} \operatorname{Ker}\left(s_{i j}\right),
$$

for every i of I.
Let $s: \oplus_{i \in I} M_{i} \longrightarrow \oplus_{i \in I} M_{i}$, and let x be an element of $\oplus_{i \in I} M_{i}$, then $x=\sum_{i \in I} x_{i}$ with $x_{i} \in M_{i}, x_{i} \neq 0$ for every $i \in I^{\prime}$ (where I^{\prime} is finite and I^{\prime} is subset of I). Thus

$$
s(x)=s\left(\sum_{i \in I} x_{i}\right)=\sum_{i \in I} s\left(x_{i}\right)=\sum_{i \in I} \sum_{j \in I} s_{i j}\left(x_{i}\right)=\left[s_{i j}\right]_{I \times I}^{T} \cdot\left[x_{i}\right]_{I \times 1},
$$

with $\left[s_{i j}\right]_{I \times I}^{T}$ is the transposet matrix of $\left[x_{i j}\right]_{I \times I}$. Let x be an element of $\operatorname{Ker}(s) \cap M_{i}$, then x is an element of M_{i} and $s(x)=0$. Thus $x=\sum_{j \in I} x_{j}=x_{i}$ with x_{j} being an element of M_{j} for every j of I, and $s_{i j}\left(x_{i}\right)=0$ for every j of I. Hence, x_{i} is an element of $\operatorname{Ker}\left(s_{i j}\right)$ for every I, it follows that x is an element of $\cap_{j \in I} \operatorname{Ker}\left(s_{i j}\right)$, thus $\operatorname{Ker}(s) \cap M_{i}$ is a subset of $\cap_{j \in I} \operatorname{Ker}\left(s_{i j}\right)$. If x is an element of $\cap_{j \in I} \operatorname{Ker}\left(s_{i j}\right)$ then x is an element of M_{i} and $s_{i j}(x)=0$ for every j in I. Thus $s(x)=s\left(\sum_{j \in I} x_{j}\right)=s\left(x_{i}\right)=\sum_{j \in I} s_{i j}\left(x_{i}\right)=0$, hence x is an element of Kers, i.e., x is an element of $\operatorname{Ker}(s) \cap M_{i}$. It follows that $\cap_{j \in I} \operatorname{Ker}\left(s_{i j}\right)$ is a subset of $\operatorname{Ker}(s) \cap M_{i}$. Thus,

$$
\operatorname{Ker}(s) \cap M_{i}=\cap_{j \in I} \operatorname{Ker}\left(s_{i j}\right),
$$

for every i of I.
Claim 3. If s is an element of Δ then s_{i} is an element of Δ_{i}, for every i of I.
Let s be an element of Δ, then $\operatorname{Ker}(s)$ is an essential submodule of M. By Claim 2 and [1, Proposition 5.16] $\operatorname{Ker}(s) \cap M_{i}=\cap_{j \in I} \operatorname{Ker}\left(s_{i j}\right)$ is an essential submodule of M_{i} for
every i of I. Thus $\operatorname{Ker}\left(s_{i}\right)$ is an essential submodule of M_{i}. It follows that s_{i} is an element of Δ_{i}, for every i of I.

Claim 4. If I is a finite set and s_{i} is an element of Δ_{i} for every i of I then s is also an element of Δ.

By Claim 1, $\operatorname{Ker}_{i \neq j}\left(s_{i j}\right)$ is an essential submodule of M for every i of I, thus $\operatorname{Ker}_{i \neq j}\left(s_{i j}\right) \cap$ M_{i} is also an essential submodule of M_{i}. Since I is the finite set and by [1, Proposition 5.16], $\cap_{i \neq j} \operatorname{Ker}\left(s_{i j}\right)$ is an essential submodule of M_{i}. Because, s_{i} is an element of $\Delta_{i}, \operatorname{Ker}\left(s_{i}\right)$ is an essential submodule of M_{i}, thus $\cap_{j \in I} \operatorname{Ker}\left(s_{i j}\right)$ is an essential submodule of M_{i} for every i of I. Hence $\operatorname{Ker}(s) \cap M_{i}$ is an essential submodule of $M_{i}\left(\right.$ by Claim 2), $\oplus_{i \in I}\left(\operatorname{Ker}(s) \cap M_{i}\right)$ is an essential submodule of $M=\oplus_{i \in I} M_{i}$. Thus $\operatorname{Ker}(s)$ is also an essential submodule of M. It follows that s is an element of Δ.

By Claim 1, Claim 2, Claim 3,

$$
S / \Delta=\left(A_{i j}\right)_{I \times I}
$$

with $A_{i j}=S_{i} / \Delta_{i}$ if $i=j$ and $A_{i j}=0$ if $i \neq j$. Let $\varphi: \prod_{i \in I} S_{i} / \Delta_{i} \longrightarrow S / \Delta$ be a homomorphism such that $\varphi\left(\left(s_{i}+\Delta_{i}\right)\right)=\left[s_{i j}\right]_{I \times I}$ with $s_{i j}$ is an element of $A_{i j}$. Note that $\operatorname{Ker}(\varphi)=\left\{\left(s_{i}+\Delta_{i}\right) \mid s=\left[s_{i j}\right]_{I \times I} \in \Delta\right\}=\left\{\left(s_{i}+\Delta_{i}\right) \mid s_{i} \in \Delta_{i}\right\}=(0)$, thus φ is a monomorphism. Hence, $\prod_{i \in I} S_{i} / \Delta_{i} \cong X$ with X is a submodule of S / Δ.

If I is a finite set, then s is an element of Δ if and only if s_{i} is an element of Δ_{i} for every i of I. Hence $S / \Delta=\left[A_{i j}\right]_{I \times I} \cong \prod_{i \in I} S_{i} / \Delta_{i}$.
(ii). Assume that, $\prod_{i \in I} S_{i} / \Delta_{i} \cong S / \Delta$ with M_{i} and M_{j} are relatively injective for every i, j are elements of I and $i \neq j$, we will show that M_{i} and M_{j} are orthogonal for any i, j of I and $i \neq j$.

Assume that, there are two elements α and β of I and $\alpha \neq \beta$ such that M_{α} and M_{β} are not orthogonal. There exist two submodules E_{α} of M_{α} and E_{β} of M_{β} with $E_{\alpha} \cong E_{\beta}$. Let $f_{\alpha \beta}: E_{\alpha} \longrightarrow E_{\beta}$ be an isomorphism, then $f_{\alpha \beta}: E_{\alpha} \longrightarrow M_{\beta}$ is a monomorphism. Since M_{β} is M_{α}-injective, there exist $g_{\alpha \beta}: M_{\alpha} \longrightarrow M_{\beta}$ is an extending of $f_{\alpha \beta}$. Note that $\operatorname{Ker}\left(g_{\alpha \beta}\right)$ is an essential submodule of M thus $\operatorname{Ker}\left(g_{\alpha \beta}\right) \cap E_{\alpha} \neq 0$. There exists element x_{α} of E_{α} with $x_{\alpha} \neq 0$ and $g_{\alpha \beta}\left(x_{\alpha}\right)=f_{\alpha \beta}\left(x_{\alpha}\right)=0$, this is the contradiction. Since f is a monomorphism. Hence, M_{i} and M_{j} are orthogonal for any i, j of I and $i \neq j$.

By the Theorem A, we have the Corollary B.
Corollary B. (i). Let $M=\oplus_{i=1}^{n} M_{i}$ be a direct sum of submodules such that M_{i} and M_{j} are orthogonal for any i, j of $\{1,2, \ldots, n\}$ and $i \neq j$, then $\prod_{i=1}^{n} S_{i} / \Delta_{i} \cong S / \Delta$.
(ii). Let $M=\oplus_{i=1}^{n} M_{i}$ be a direct sum of submodules such that M_{i} and M_{j} are relatively injective for any i, j of $\{1,2, \ldots, n\}, i \neq j$ and $\prod_{i=1}^{n} S_{i} / \Delta_{i} \cong S / \Delta$, then M_{i} and M_{j} are orthogonal with i, j of $\{1,2, \ldots, n\}$ and $i \neq j$, where $S=\operatorname{End}(M), S_{i}=\operatorname{End}\left(M_{i}\right)(i=$ $1,2, \ldots, n)$ and $\Delta=\left\{s \in S \mid \operatorname{Ker}(s) \subset^{e} M\right\}, \Delta_{i}=\left\{s_{i} \in S_{i} \mid \operatorname{Ker}\left(s_{i}\right) \subset^{e} M_{i}\right\}(i=1,2, \ldots, n)$.

Note that, Regarding Corollary B, in case $n=2$, we have [2, Lemma 3.3].

Acknowledgment

This research was supported by Ministry of Education and Training, grant no. B2018-HHT-02.

REFERENCES

[1] F. W. Anderson and K. R. Fuller, Ring and Categories of Modules, Springer - Verlag, New York - Heidelberg - Berlin, 1974.
[2] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series 147, Cambridge Univ. Press, 1990.

TÓM TẮT

MỘT CHÚ Ý VỀ VÀNH CÁC TỰ ĐỒNG CẤU CỦA MÔĐUN TRỰC GIAO

Trong bài báo này chúng tôi đưa ra một kết quả về vành các tự đồng cấu của môđun $M=\oplus_{i \in I} M_{i}$ trong đó M_{i} và M_{j} là trực giao lẫn nhau với bất kỳ i, j của I và $i \neq j$. Kết quả này đã tổng quát một kết quả của S . H . Mohamed và B . J.Müller trong [2, Lemma 3.3].

[^0]: ${ }^{1)}$ Email: an.levan@htu.edu.vn (L. V. An)

