A NOTE ON THE ENDOMORPHISM RING OF ORTHOGONAL MODULES

Le Van An, Nguyen Thi Hai Anh

Department of Education, Ha Tinh University, Ha Tinh City, Vietnam Received on 25/4/2019, accepted for publication on 13/6/2019

Abstract: In this paper, we extend Mohamed-Müller's results [2, Lemma 3.3] about the endomorphism ring of a module $M = \bigoplus_{i \in I} M_i$, where M_i and M_j are orthogonal for all distinct elements $i, j \in I$.

1 Introduction

All rings are associated with identity, and all modules are unital right modules. The endomorphism ring of M are denoted End(M). A submodule N of M is said to be an essential (notationally $N \subset^e M$) if $N \cap K \neq 0$ for every nonzero submodule K of M. Two modules M and N are called orthogonal if they have no nonzero isomorphic submodules. Let N be a right R-module. A module M is said to be N-injective if for every submodule X of N, any homomorphism $\varphi : X \longrightarrow M$ can be extended to a homomorphism $\psi : N \longrightarrow M$. Two modules M and N are called relatively injective if M is N-injective and N is M-injective. In [2, Lemma 3.3], S. H. Mohamed and B. J. Müller proved that:

Let $M = M_1 \oplus M_2$. If M_1 and M_2 are orthogonal, then

$$S/\Delta \cong S_1/\Delta_1 \times S_2/\Delta_2.$$

The converse holds if M_1 and M_2 are relatively injective, where

$$S = End(M), S_i = End(M_i)(i = 1, 2)$$

and

$$\Delta = \{ s \in S \mid Ker(s) \subset^{e} M \}, \Delta_i = \{ s_i \in S_i \mid Ker(s_i) \subset^{e} M_i \} (i = 1, 2).$$

In this paper, we study [2, Lemma 3.3] in generalized case. We have:

Theorem A. (i). Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of submodules such that M_i and M_j are orthogonal for any i, j of I and $i \neq j$, then $\prod_{i \in I} S_i / \Delta_i$ is embedded into S / Δ .

In particular, if I is a finite set, $\prod_{i \in I} S_i / \Delta_i \cong S / \Delta$.

(ii). Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of submodules such that M_i and M_j are relatively injective for any i, j of $I, i \neq j$ and $\prod_{i \in I} S_i / \Delta_i \cong S / \Delta$, then M_i and M_j are orthogonal with i, j of I and $i \neq j$, where $S = End(M), S_i = End(M_i)(i \in I)$ and $\Delta = \{s \in S \mid Ker(s) \subset^e M\}, \Delta_i = \{s_i \in S_i \mid Ker(s_i) \subset^e M_i\}(i \in I)$.

¹⁾ Email: an.levan@htu.edu.vn (L. V. An)

2 Proof of Theorem A

(i). Let s be an element of the endomorphism ring S and x an element of the module M, then $x = \sum_{i \in I} x_i$ with $x_i \neq 0$ for every $i \in I'$ (where I' is the finite subset of I), $s(x) = \sum_{i \in I} s(x_i)$. Because $s(x_i)$ is an element of M, thus $s(x_i) = \sum_{j \in I} s_{ij}(x_i)$ with $s_{ij}(x_i) = p_j \circ s(x_i)$ is an element of M_j (where $p_j : M \longrightarrow M_j$ is a natural homomorphism, $s_{ij}(x_i) \neq 0$ for every $j \in I_0$, I_0 is finite and I_0 is a subset of I). We consider the matrix $s = [s_{ij}]_{I \times I}$ with $s_{ij} : M_i \longrightarrow M_j$ being homomorphism. Note that, s_{ij} is an endomorphism of M because $s_{ij}(\sum_{j \in I} x_j) = 0 + \ldots + 0 + s_{ij}(x_i) + 0 + \ldots$

Claim 1. $Ker(s_{ij})$ is an essential submodule of M for every i, j belonging to I and $i \neq j$.

Let N be a nonzero submodule of M and $Ker(s_{ij}) \cap N = 0$, then $s_{ij} \mid_N$ is a monomorphism, thus $N \cong s_{ij}(N)$ with $s_{ij}(N)$ being a submodule of M_j . But $s_{ij}(\oplus_{k \neq i} M_k) = 0$, thus $\bigoplus_{k \neq i} M_k$ is a submodule of $Ker(s_{ij})$. Hence $\bigoplus_{k \neq i} M_k \cap N = 0$, $(\bigoplus_{k \neq i} M_k) \oplus N$ is a submodule of $M = (\bigoplus_{k \neq i} M_k) \oplus M_i$. Thus

$$N \cong ((\oplus_{k \neq i} M_k) \oplus N) / (\oplus_{k \neq i} M_k) \subset M / (\oplus_{k \neq i} M_k) \cong M_i.$$

Let $s_{ij}(N) = Y$ be a submodule of M_j , there exists a submodule X of M_i such that $X \cong N \cong Y$. This is a contradiction to the fact that M_i and M_j are orthogonal. Therefore, $Ker(s_{ij})$ is an essential submodule of M for every i, j that are elements of I and $i \neq j$.

Claim 2.

$$Ker(s) \cap M_i = \bigcap_{i \in I} Ker(s_{ij}),$$

for every i of I.

Let $s: \bigoplus_{i\in I} M_i \longrightarrow \bigoplus_{i\in I} M_i$, and let x be an element of $\bigoplus_{i\in I} M_i$, then $x = \sum_{i\in I} x_i$ with $x_i \in M_i, x_i \neq 0$ for every $i \in I'$ (where I' is finite and I' is subset of I). Thus

$$s(x) = s(\sum_{i \in I} x_i) = \sum_{i \in I} s(x_i) = \sum_{i \in I} \sum_{j \in I} s_{ij}(x_i) = [s_{ij}]_{I \times I}^T \cdot [x_i]_{I \times I},$$

with $[s_{ij}]_{I\times I}^T$ is the transposet matrix of $[x_{ij}]_{I\times I}$. Let x be an element of $Ker(s) \cap M_i$, then x is an element of M_i and s(x) = 0. Thus $x = \sum_{j \in I} x_j = x_i$ with x_j being an element of M_j for every j of I, and $s_{ij}(x_i) = 0$ for every j of I. Hence, x_i is an element of $Ker(s_{ij})$ for every I, it follows that x is an element of $\cap_{j \in I} Ker(s_{ij})$, thus $Ker(s) \cap M_i$ is a subset of $\cap_{j \in I} Ker(s_{ij})$. If x is an element of $\cap_{j \in I} Ker(s_{ij})$ then x is an element of M_i and $s_{ij}(x) = 0$ for every j in I. Thus $s(x) = s(\sum_{j \in I} x_j) = s(x_i) = \sum_{j \in I} s_{ij}(x_i) = 0$, hence x is an element of $Ker(s) \cap M_i$. It follows that $\cap_{j \in I} Ker(s_{ij})$ is a subset of $Ker(s) \cap M_i$. Thus,

$$Ker(s) \cap M_i = \bigcap_{j \in I} Ker(s_{ij}),$$

for every i of I.

Claim 3. If s is an element of Δ then s_i is an element of Δ_i , for every i of I.

Let s be an element of Δ , then Ker(s) is an essential submodule of M. By Claim 2 and [1, Proposition 5.16], $Ker(s) \cap M_i = \bigcap_{i \in I} Ker(s_{ij})$ is an essential submodule of M_i for every i of I. Thus $Ker(s_i)$ is an essential submodule of M_i . It follows that s_i is an element of Δ_i , for every *i* of *I*.

Claim 4. If I is a finite set and s_i is an element of Δ_i for every i of I then s is also an element of Δ .

By Claim 1, $Ker_{i\neq j}(s_{ij})$ is an essential submodule of M for every i of I, thus $Ker_{i\neq j}(s_{ij}) \cap$ M_i is also an essential submodule of M_i . Since I is the finite set and by [1, Proposition 5.16], $\bigcap_{i\neq j} Ker(s_{ij})$ is an essential submodule of M_i . Because, s_i is an element of Δ_i , $Ker(s_i)$ is an essential submodule of M_i , thus $\bigcap_{j \in I} Ker(s_{ij})$ is an essential submodule of M_i for every *i* of *I*. Hence $Ker(s) \cap M_i$ is an essential submodule of M_i (by Claim 2), $\bigoplus_{i \in I} (Ker(s) \cap M_i)$ is an essential submodule of $M = \bigoplus_{i \in I} M_i$. Thus Ker(s) is also an essential submodule of M. It follows that s is an element of Δ .

By Claim 1, Claim 2, Claim 3,

$$S/\Delta = (A_{ij})_{I \times I}$$

with $A_{ij} = S_i/\Delta_i$ if i = j and $A_{ij} = 0$ if $i \neq j$. Let $\varphi : \prod_{i \in I} S_i/\Delta_i \longrightarrow S/\Delta$ be a homomorphism such that $\varphi((s_i + \Delta_i)) = [s_{ij}]_{I \times I}$ with s_{ij} is an element of A_{ij} . Note that $Ker(\varphi) = \{(s_i + \Delta_i) \mid s = [s_{ij}]_{I \times I} \in \Delta\} = \{(s_i + \Delta_i) \mid s_i \in \Delta_i\} = (0), \text{ thus } \varphi \text{ is a}$ monomorphism. Hence, $\prod_{i \in I} S_i / \Delta_i \cong X$ with X is a submodule of S / Δ .

If I is a finite set, then s is an element of Δ if and only if s_i is an element of Δ_i for every *i* of *I*. Hence $S/\Delta = [A_{ij}]_{I \times I} \cong \prod_{i \in I} S_i/\Delta_i$.

(ii). Assume that, $\prod_{i \in I} S_i / \Delta_i \cong S / \Delta$ with M_i and M_j are relatively injective for every i, j are elements of I and $i \neq j$, we will show that M_i and M_j are orthogonal for any i, j of I and $i \neq j$.

Assume that, there are two elements α and β of I and $\alpha \neq \beta$ such that M_{α} and M_{β} are not orthogonal. There exist two submodules E_{α} of M_{α} and E_{β} of M_{β} with $E_{\alpha} \cong E_{\beta}$. Let $f_{\alpha\beta}: E_{\alpha} \longrightarrow E_{\beta}$ be an isomorphism, then $f_{\alpha\beta}: E_{\alpha} \longrightarrow M_{\beta}$ is a monomorphism. Since M_{β} is M_{α} -injective, there exist $g_{\alpha\beta}: M_{\alpha} \longrightarrow M_{\beta}$ is an extending of $f_{\alpha\beta}$. Note that $Ker(g_{\alpha\beta})$ is an essential submodule of M thus $Ker(g_{\alpha\beta}) \cap E_{\alpha} \neq 0$. There exists element x_{α} of E_{α} with $x_{\alpha} \neq 0$ and $g_{\alpha\beta}(x_{\alpha}) = f_{\alpha\beta}(x_{\alpha}) = 0$, this is the contradiction. Since f is a monomorphism. Hence, M_i and M_j are orthogonal for any i, j of I and $i \neq j$.

By the Theorem A, we have the Corollary B.

Corollary B. (i). Let $M = \bigoplus_{i=1}^{n} M_i$ be a direct sum of submodules such that M_i and M_j are orthogonal for any i, j of $\{1, 2, ..., n\}$ and $i \neq j$, then $\prod_{i=1}^n S_i / \Delta_i \cong S / \Delta$.

(ii). Let $M = \bigoplus_{i=1}^{n} M_i$ be a direct sum of submodules such that M_i and M_j are relatively injective for any i, j of $\{1, 2, ..., n\}$, $i \neq j$ and $\prod_{i=1}^{n} S_i / \Delta_i \cong S / \Delta$, then M_i and M_j are orthogonal with i, j of $\{1, 2, ..., n\}$ and $i \neq j$, where S = End(M), $S_i = End(M_i)(i = C_i)$ $(1, 2, ..., n) \text{ and } \Delta = \{s \in S \mid Ker(s) \subset^{e} M\}, \Delta_{i} = \{s_{i} \in S_{i} \mid Ker(s_{i}) \subset^{e} M_{i}\} (i = 1, 2, ..., n).$

Note that, Regarding Corollary B, in case n = 2, we have [2, Lemma 3.3].

Acknowledgment

This research was supported by Ministry of Education and Training, grant no. B2018-HHT-02.

REFERENCES

[1] F. W. Anderson and K. R. Fuller, *Ring and Categories of Modules*, Springer - Verlag, New York - Heidelberg - Berlin, 1974.

[2] S. H. Mohamed and B. J. Müller, *Continuous and Discrete Modules*, London Math. Soc. Lecture Note Series **147**, Cambridge Univ. Press, 1990.

TÓM TẮT

MỘT CHÚ Ý VỀ VÀNH CÁC TỰ ĐỒNG CẦU CỦA MÔĐUN TRỰC GIAO

Trong bài báo này chúng tôi đưa ra một kết quả về vành các tự đồng cấu của môđun $M = \bigoplus_{i \in I} M_i$ trong đó M_i và M_j là trực giao lẫn nhau với bất kỳ i, j của I và $i \neq j$. Kết quả này đã tổng quát một kết quả của S. H. Mohamed và B. J.Müller trong [2, Lemma 3.3].